
Win-I2CUSBDLL ©

Professional
DLL/Software User’s Manual

Win-I2CUSBDLL Professional

Date: February 12, 2011

Information provided in this document is solely for use with Win-I2CUSBDLL Professional. The Boardshop /
SB Solutions, Inc. reserves the right to make changes or improvements to this document at any time without
notice. We assume no liability whatsoever in the sale or use of this product, including infringement of any
patent or copyright. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of SB Solutions, Inc.
Reasonable efforts have been made to ensure the accuracy of the information presented. However, The
Boardshop and SB Solutions, Inc. assume no responsibility for the accuracy of the information.

Microsoft Visual Basic, Visual C++, Windows and Windows NT are registered trademarks of Microsoft
Corporation.
Delphi and C++ Builder are trademarks of Embarcadero Technologies, Inc.
Other brand names are trademarks or registered trademarks of their respective owners.

Questions or comments regarding this document should be emailed to: sales@demoboard.com.

Suggestions for enhancements can be emailed to: sales@demoboard.com.

02/12/11 2

mailto:sales@demoboard.com
mailto:sales@demoboard.com

Win-I2CUSBDLL Professional

© 2004-2011 SB Solutions, Inc. All rights reserved. Feb-11

02/12/11 3

Win-I2CUSBDLL Professional

Table of Contents

I²C PROTOCOL ... 6

GENERAL CHARACTERISTICS .. 6
BIT TRANSFER ... 6
START AND STOP CONDITIONS .. 6
I²C ADDRESS .. 6
SUBADDRESS ... 7
DATA TRANSFER ... 7
ACKNOWLEDGE ... 7
I²C BUS DOCUMENTATION .. 7

MINIMUM SYSTEM CONFIGURATION ... 8

WIN-I2CUSBDLL PROFESSIONAL CONTENTS ... 8

FILES INSTALLED FOR WIN-I2CUSBDLL PROFESSIONAL .. 8
LOCATION OF DLL .. 8

TESTING THE INSTALLATION .. 8

MIGRATING TO WIN-I2CUSB V3 ... 8

EXPORTED FUNCTIONS USING THE STDCALL CONVENTION 9

GENERAL CONTROL FUNCTIONS ... 9

ENABLE3VOUTPUTPOWER .. 9
ENABLE5VOUTPUTPOWER .. 9
GETFIRMWAREREVISION .. 9
GETHARDWAREINFO ... 9
GETNUMBEROFDEVICES ... 10
SELECTBYSERIALNUMBER ... 10
GETSERIALNUMBERS .. 10
GET_DLL_VERSION .. 10
SHUTDOWNPROCEDURE .. 10

IO FUNCTIONS ... 11

READ_IO ... 11
WRITE_IO .. 11
DISABLE_I2C ... 11
ENABLE_I2C .. 11
GPIO_I2C_WRITE ... 12
GPIO_I2C_READ .. 12
DISABLE_SPI ... 12
ENABLE_SPI .. 12
CONFIGURE_SPI_GPIO ... 13

02/12/11 4

Win-I2CUSBDLL Professional

GPIO_SPI_WRITE ... 13
GPIO_SPI_READ... 13

I2C SPECIFIC FUNCTIONS ... 14

GETI2CFREQUENCY .. 14
GETI2CIGNOREACK .. 14
I2CIGNOREACK ... 14
I2CREADARRAY .. 14
I2CREADARRAYDB .. 15
I2C10READARRAY .. 15
I2CREAD .. 16
I2CRECEIVEBYTE .. 16
I2CREADBYTE ... 17
I2CSENDBYTE ... 17
I2CWRITE .. 18
I2CWRITEARRAY .. 18
I2CWRITEARRAYDB .. 19
I2C10WRITEARRAY .. 19
I2CWRITEBYTE ... 20
I2CWRITEREPWRITE .. 20
I2CWRITEREPREAD .. 21
SETI2CFREQUENCY ... 21
SETI2CFREQUENCY_DC ... 21

SPI SPECIFIC FUNCTIONS ... 22

SPI_CONFIGURE .. 22
SPI_SETFREQUENCY ... 22
SPI_GENERIC .. 22
SPI_WRITE .. 23
SPI_WRITEREAD ... 23
SPI_WRITEWITHOC ... 24

APPENDIX A ... 25

SPI MODES OF OPERATION ... 25

ERROR CODES .. 27

02/12/11 5

Win-I2CUSBDLL Professional

02/12/11 6

I²C Protocol
General Characteristics
The I²C protocol allows data to be transferred between devices using two open-drain (or open-
collector) bi-directional lines. One line is the serial clock (SCL) and the other is the serial data
(SDA). The bus master generates the Start conditions, the clock signals on SCL, as well as the Stop
condition. An acknowledge (ACK) is transmitted by the receiving device on the bus after each byte
is sent.

Bit Transfer
Data on SDA must be stable while SCL is high. The state of SDA when SCL is high determines the
logic level of the transmitted data bit.

Start and Stop Conditions
Within the procedure of the I²C bus, unique situations arise which are defined as START and STOP
conditions. A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique
case. This situation indicates a START condition. A LOW to HIGH transition on the SDA line
while SCL is HIGH defines a STOP condition. The master always generates START and STOP
conditions. The bus is considered to be busy after the START condition. The bus is considered to be
free again a certain time after the STOP condition.

I²C Address
The first seven bits of an I²C transmission, after a Start condition, make up the slave address. The
eighth bit (or the least significant bit) is the R/W bit that determines the direction of the message.

0' in the least significant position of the first byte means that the master will WRITE information

A '

Win-I2CUSBDLL Professional

02/12/11 7

to the selected slave. A '1' in this position means that the master will READ information from the
slave.
When an I²C address is sent, each device in a system compares the first seven bits after the START

Subaddress
 contains more than one register, the various registers are generally accessed

ds to be

Data Transfer
 line must be 8-bits long. The number of bytes that can be transmitted per

d

a

Acknowledge
ted clock pulse is generated by the master (Win-I2CUSBDLL Professional is

cknowledging the last byte it requires.

I²C Bus Documentation
 be found at

condition with its own address. If they match, the device considers itself addressed by the master as a
slave-receiver or slave-transmitter, depending on the R/W bit.

When an I²C device
using a subaddress that is sent following the device address (see the I2CWriteArray and
I2CReadArray sections below). The subaddress acts like a pointer to the register that nee
accessed.

Every byte on the SDA
transfer is unrestricted. Each byte must also be followed by an acknowledge bit. Data is transferre
with the most significant bit first. If a receiver can’t receive another complete byte of data until it
has performed some other function, it can hold the clock line SCL low to force the transmitter into
wait state.

The Acknowledge rela
always the bus master). The transmitter releases the SDA line during the acknowledge clock pulse.
The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains
stable low during the high period of the clock pulse.
The master-receiver signals the end of a read by not a

The complete I²C Bus specification can
Download the I²C from the NXP website

Win-I2CUSBDLL Professional

Minimum System Configuration
 PC with a Pentium and 8MB RAM or better
 Windows 2000, XP, Vista, Windows 7 (32-bit or 64-bit)
 10 MB of free HDD space
 CD ROM drive (used for installation only)
 USB port (either 1.1 or 2.0 compatible)

Win-I2CUSBDLL Professional Contents
• Win-I2CUSBDLL installation CD ROM (optional)
• Win-I2CUSB Hardware

Files installed for Win-I2CUSBDLL Professional
• WinI2CUSBpro.dll - this is the actual dll file you will link to your application. The installation

process places this file in the appropriate Windows\System folder
• Win-I2CUSBDLL Professional DLL User’s Manual (this document)
• Visual C++, Delphi, C++ Builder, and Visual Basic example files
• USBtoI2C.exe application
• Win-SPIUSB.exe application
• Win-I2CUSB Software User's Manual
• Win-I2CUSB - Getting Started
• Win-I2CUSB Hardware User's Manual
• Software license agreement (license.txt)
• Registration Form (RegFile.txt)

Location of DLL
The WinI2CUSBpro.dll is placed in the Windows\System32 directory during installation.

Testing the Installation
After Win-I2CUSBDLL Professional has been installed on your hard disk, the installation of the
driver can be tested with the included Win-I2CUSB application. The hardware should be inserted
into an available USB port, and then the Win-I2CUSB application can be started. If the installation
was successful, you will see the “Hardware Detected” message on the screen.
Note that you must have Administrator privileges or the USB drivers will not be loaded correctly.
After the software has successfully been installed, normal user privileges can be restored.

Migrating to Win-I2CUSB V3 hardware
The applications you have written for Win-I2CUSB V2 should be compatible with the new V3
hardware, with the following difference:

1. When using the SPI pins as GPIO, the V2 hardware configured the pins as a quasi
bidirectional outputs, while the new hardware initially configures the SPI_GPIO pins as
outputs. A new function has been added to allow the user to configure the SPI_GPIO pins
as inputs or outputs (see Configure_SPI_GPIO function).

2. Software version V5 or later is required to support Win-I2CUSB V3.
3. All SPI transfers are limited to MSB first (there is no longer an option for LSB first).

02/12/11 8

Win-I2CUSBDLL Professional

Exported Functions using the stdcall convention

Most programming languages, such as Visual C++, Visual C#, Delphi, C++ Builder, Visual Basic,
and LabView can use the stdcall calling convention. The stdcall convention passes the parameters
to the functions in the dll from right to left and it is up to the called functions (in this case, the
functions in USBtoI2Cpro.dll) to clean up the stack.

General Control Functions
Enable3VOutputPower
The Win-I2CUSB hardware contains a 3.3V output which can be used to supply power to a low-
power target. The Win-I2CUSB hardware enumerates as a low power device which means that it
draws less than 100mA. The combined current consumption of the target system and the Win-
I2CUSB hardware should therefore consume less than 100mA in order to meet this requirement.
The function takes a Boolean false (‘0’) to disable the output while a true (non-zero value) will
enable the output. The function returns true if enabled and false if disabled.
The default value is false (disabled).

C/C++: short int Enable3VOutputPower(short int State);
Delphi: Enable3VoutputPower(State: LongBool): LongBool;
VB: Enable3VOutputPower(ByVal State As Boolean) As Boolean

Enable5VOutputPower
The Win-I2CUSB hardware contains a 5V output which can be used to supply power to a low-power
target. The Win-I2CUSB hardware enumerates as a low power device which means that it draws
less than 100mA. The combined current consumption of the target system and the Win-I2CUSB
hardware should therefore consume less than 100mA in order to meet this requirement.
The function takes a Boolean false (‘0’) to disable the output while a true (non-zero value) will
enable the output. The function returns true if enabled and false if disabled.
The default value is false (disabled).

C/C++: short int Enable5VOutputPower(short int State);
Delphi: Enable5VoutputPower(State: LongBool): LongBool;
VB: Enable5VOutputPower(ByVal State As Boolean) As Boolean

GetFirmwareRevision
The firmware revision can found by using the GetFirmwareRevision function. The revision is
returned in BCD format. For example, a value of 0x12 would correspond to firmware version 1.2.

C/C++: uchar GetFirmwareRevision(void);
Delphi: GetFirmwareRevision: byte;
VB: GetFirmwareRevision() As Byte

GetHardwareInfo
This function takes a pointer to an array of bytes which will be loaded with three values:
1. I2C frequency (note that the value returned is the I2C frequency divided by 2)
2. 3.3V Power Output State (0 = ‘On’ and 1=’Off’)
3. 5V Power Output State (0 = ‘On’ and 1=’Off’)

02/12/11 9

Win-I2CUSBDLL Professional

C/C++: int GetHardwareInfo(uchar *HardwareData);
Delphi: GetHardwareInfo(var HardwareData: byte): integer;
VB: GetHardwareInfo(ByRef HardwareData As Byte) As Long

GetNumberOfDevices
The GetNumberOfDevices function returns the number of Win-I2CUSB adapters currently
enumerated on the user’s PC.

C/C++: int GetNumberOfDevices(void);
Delphi: GetNumberOfDevices: integer;
VB: GetNumberOfDevices() As Long

SelectBySerialNumber
Win-I2CUSB allows you to communicate with a specific adapter based on its serial number. Just
use the SelectBySerialNumber function to specify the serial number (labeled on every Win-I2CUSB
adapter) you would like to communicate with and then all communications will continue with this
adapter until a new serial number is specified. This is a simple way to identify the USB adapter
when multiple Win-I2CUSB adapters are present in your system.
The function returns a ‘0’ if the serial number is not found and a ‘1’ if the serial number has been
found.

C/C++: int SelectBySerialNumber(int SerialNumber);
Delphi: SelectBySerialNumber(SerialNumber: integer): integer;
VB: SelectBySerialNumber(ByVal SerialNumber As Long) As Long

GetSerialNumbers
This function takes a pointer to an array which will be loaded with the serial numbers of the Win-
I2CUSB adapters attached to the user’s system. The function returns the number of Win-I2CUSB
adapters attached.

C/C++: int GetSerialNumbers(int *SerialNumbers);
Delphi: GetSerialNumbers (var SerialNumbers: integer): integer;
VB: GetSerialNumbers (ByRef SerialNumbers As Long) As Long

Get_DLL_Version
This function returns the version of the USBtoI2Cpro.dll file. Normally, it will not be necessary to
call this function unless you need to know the specific version of the DLL is installed. We have
found this function to be useful for development environments that do not automatically load the
DLL into memory until a function is called (for example, console applications).

C/C++: int Get_DLL_Version(void);
Delphi: Get_DLL_Version: integer;
VB: Get_DLL_Version () As Long

ShutdownProcedure
This function should be called when the application using the DLL is closed.

C/C++: void ShutdownProcedure(void);
Delphi: ShutdownProcedure;
VB: ShutdownProcedure()

02/12/11 10

Win-I2CUSBDLL Professional

IO Functions
There are three sources of general purpose IO available on the Win-I2CUSB hardware:

1. There is a dedicated IN and a dedicated OUT pin. These are always available, even when
both the I2C and SPI buses are in use

2. The I2C pins may be used as open-drain IO. The I2C functions must be disabled for these
pins to be used as IO.

3. The SPI pins may be used as quasi-bidirectional IO. The SPI functions must be disabled for
these pins to be used as IO.

Read_IO
This function returns the state of the general purpose input (IN) port on the Win-I2CUSB hardware.
The function returns a ‘1’ for a high logic level and a ‘0’ for a low logic level. The microcontroller
operates at VDD=3.3V.

Vil low level input voltage 0.3*VDD = 0.99V
Vih high level input voltage 0.7*VDD = 2.31V

Note that the microcontroller is a 3.3V device but this input is 5V tolerant.

C/C++: int Read_IO(void);
Delphi: Read_IO: integer;
VB: Read_IO() As Long

Write_IO
This function writes a value to the general-purpose output (OUT) port on the Win-I2CUSB
hardware. The function takes a ‘1’ for a high logic level and a ‘0’ for a low logic level.
The Output Port has the following characteristics:
Voh = 2.9V (typical @ 4 mA)

Vol = 0.4V (typical @ 4 mA)

C/C++: int Write_IO(int OutputState);
Delphi: Write_IO(OutputState: integer): integer;
VB: Write_IO(ByVal OutputState As Long) As Long

Disable_I2C
The Disable_I2C function disables the I2C functionality on the Win-I2CUSB hardware. The I2C
function is enabled on hardware after reset so this function must be called before the I2C pins (SCL
and SDA) can be used as GPIO. After the function has been called, the pins are configured as open-
drain IO. If the communication to the hardware was successful, the function returns a ‘1’ while a ‘0’
is returned if unsuccessful.

C/C++: int Disable_I void ; 2C ()
Delphi: Disable_I2C: integer;
VB: Disable_I2C () As Long

Enable_I2C
The Enable_I2C function re-enables the I2C functionality on the Win-I2CUSB hardware. The I2C
functionality is disabled after the Disable_I2C function is called so this function can be called to
once again enable the I2C interface.

02/12/11 11

Win-I2CUSBDLL Professional

If the communication to the hardware was successful, the function returns a ‘1’ while a ‘0’ is
returned if unsuccessful.

C/C++: int Enable_I void 2C();
Delphi: Enable_I2C: integer;
VB: Enable_I2C () As Long

GPIO_I2C_Write
The GPIO_I2C_Write function writes two bits of IO data to the I2C pins. Disable_I2C must be
called before using these pins as GPIO. If the communication to the hardware was successful, the
function returns a ‘1’ while a ‘0’ is returned if unsuccessful.
The data byte will be sent to the I2C interface in the following format:

x x x x x x SDA SCL

C/C++: int GPIO_I2C_Write (uchar GPIOData);
Delphi: GPIO_I2C_Write (GPIOData : byte): integer;
VB: GPIO_I2C_Write (ByVal GPIOData As Byte) As Long

GPIO_I2C_Read
The GPIO_I2C_Read function reads one byte of data from the I2C pins. Disable_I2C must be called
before using these pins as GPIO.
The data will read 0xFF if the read is unsuccessful.
The data byte will be returned from the I2C interface in the following format:

0 0 0 0 0 0 SDA SCL

C/C++: uchar GPIO_I2C_ void); Read (
Delphi: GPIO_I2C_Read: byte;
VB: GPIO_I2C_Read () As Byte

Disable_SPI
The Disable_SPI function disables the SPI functionality on the Win-I2CUSB hardware. The SPI
function is enabled on hardware reset so this function must be called before the SPI pins SCLK,
MISO, MOSI, and SSN can be used as GPIO. After the function has been called, the pins are
configured as quasi bidirectional. If the communication to the hardware was successful, the function
returns a ‘1’ while a ‘0’ is returned if unsuccessful.

C/C++: int Disable_SPI (void);
Delphi: Disable_SPI: integer;
VB: Disable_SPI () As Long

Enable_SPI
The Enable_SPI function re-enables the SPI functionality on the Win-I2CUSB hardware. The SPI
functionality is disabled after the Disable_SPI function is called so this function can be called to
enable SPI communications once again. If the communication to the hardware was successful, the
function returns a ‘1’ while a ‘0’ is returned if unsuccessful.

C/C++: int Enable_SPI (void);
Delphi: Enable_SPI: integer;

02/12/11 12

Win-I2CUSBDLL Professional

VB: Enable_SPI () As Long

Configure_SPI_GPIO
The Configure_SPI_GPIO function allows the user to change the direction (input or output) of the
SPI pins used as GPIO. A “1” configures the pin as an output while a “0” configures the pin as an
input. The default direction for all four SPI pins is input.
Note that this function is only available in hardware version 3 and later.

x x x x MOSI MISO SSN SCLK

C/C++: uchar Configure_SPI_GPIO (uchar GPIODirection);
Delphi: Configure_SPI_GPIO (GPIODirection : byte byte;):
VB: Configure_SPI_GPIO (ByVal GPIODirection As Byte) As Byte

GPIO_SPI_Write
The GPIO_SPI_Write function writes four bits of data to the SPI pins. Disable_SPI must be called
before using these pins as GPIO. If the communication to the hardware was successful, the function
returns a ‘1’ while a ‘0’ is returned if unsuccessful.
The data byte will be sent to the SPI interface in the following format :

x x x x MOSI MISO SSN SCLK

C/C++: int GPIO_SPI_Write (uchar G ata PIOD);
Delphi: GPIO_SPI_Write (GPIOData : byte): integer;
VB: GPIO_SPI_Write (ByVal GPIOData As Byte) As Long

GPIO_SPI_Read
The GPIO_SPI_Read function reads one byte of data from the SPI pins. Disable_SPI must be called
before using these pins as GPIO. An unsuccessful read will return 0xFF.
The data byte will be returned from the SPI interface in the following format:

0 0 0 0 MOSI MISO SSN SCLK

C/C++: uchar GPIO_SPI_Read (void);
Delphi: GPIO_SPI_Read: byte;
VB: GPIO_SPI_Read () As Byte

02/12/11 13

Win-I2CUSBDLL Professional

I2C Specific Functions
Win-I2CUSBDLL Professional provides a large number of I2C specific functions to easily provide
communications with any i2c device. In reality, we only needed to provide two functions: I2CWrite
and I2CRead, but in order to ease integration as well as to improve the performance of Win-
I2CUSBDLL Professional, we have included a total of eleven i2c message related functions. These
have been designed to help you integrate i2c into your application a well as to give superior
performance.

GetI2CFrequency
This function takes no arguments and returns the current I²C clock frequency.

C/C++: int GetI2CFrequency(void);
Delphi: GetI2CFrequency: integer;
VB: GetI2CFrequency() As Long

GetI2CIgnoreAck
This function returns the state of IgnoreAckFlag. See the I2CIgnoreAck function for details.

C/C++: int GetI2CIgnoreA void); ck(
Delphi: GetI2CIgnoreAck: integer;
VB: GetI2CIgnoreAck () As Long

I2CIgnoreAck
The I2CIgnoreAck function is used to signal the USBtoI2C hardware to complete all messages even
if there was a Nack (no acknowledge) during the message. Normally, the hardware will end the
message and send a Stop condition after a Nack was encountered.
When the IgnoreAckFlag is ‘1’, all the I2C functions (I2CWriteByte, I2CRead, etc) will return the
standard error codes if there was a normal transmission, however, if there was a Nack, the error code
returned will be 0x0B to signal that the message was sent but there was a Nack.
Note that this function requires Win-I2CUSB firmware revision 1.9 or later.

C/C++: int I2CIgnoreAck (int IgnoreAckFlag);
Delphi: I2CIgnoreAck (IgnoreAckFlag: integer integer): ;
VB: I2CIgnoreAck (ByVal IgnoreAckFlag As Long) As Long

I2CReadArray
The I2CReadArray function takes four arguments: the device (slave) address, the device subaddress,
the number of bytes to read, and a pointer to an element within an array of bytes. It is the calling
program’s responsibility to allocate the correct memory space for the array. The function ensures
that the lsb of the address is appropriate (‘1’ or ‘0’ depending on Write or Read) before it is sent to
the target device.
The maximum number of data bytes (nBytes) to be read during the I2CReadArray function is
currently set to a maximum of 256 bytes.

C/C++: uchar I2CReadArray(uchar address, uchar subaddress, short int nBytes,
uchar *ReadData);

Delphi: I2CReadArray(address,subaddress:byte;nBytes:word; var ReadData:byte):byte;
VB: I2CReadArray(ByVal address, ByVal subaddress As Byte, ByVal nBytes

02/12/11 14

Win-I2CUSBDLL Professional

 As Integer, ByRef ReadData As Byte) As Byte

I2CReadArrayDB
This function will generally be used for reading an eeprom of 32kbits or larger that require two
subaddresses. The I2CReadArrayDB function takes five arguments: the device (slave) address, the
device’s high subaddress, low subaddress, the number of bytes to read, and a pointer to an element
within an array of bytes. It is the calling program’s responsibility to allocate the correct memory
space for the array. The function ensures that the lsb of the address is appropriate (‘1’ or ‘0’
depending on Write or Read) before it is sent to the target device.
The maximum number of data bytes (nBytes) to be read during the I2CReadArrayDB function is
currently set to a maximum of 256 bytes.
This function requires Win-I2CUSB firmware version 1.6 or later.

C/C++: uchar I2CReadArrayDB(uchar address, uchar saHigh, uchar saLow,short int
nBytes, uchar *ReadData);

Delphi: I2CReadArrayDB(address,subaddressHigh,subaddressLow:byte;nBytes:word; var
ReadData:byte):byte;

VB: I2CReadArrayDB(ByVal address, ByVal saHigh As Byte, ByVal saLow As Byte,
ByVal nBytes As Integer, ByRef ReadData As Byte) As Byte

I2C10ReadArray
The I2C10ReadArray function (read an array with 10-bit device addressing) is similar to the
I2CReadArray function; however, it uses 10-bit I²C addressing. The I²C specification states that the
10-bit address has the following format:
First byte: 1111 0xx + R/W bit
Second byte: xxxx xxxx; where x = the 10 bits of address
The function takes the received 16-bit address data and uses the lower 10 bits to generate the proper
10-bit I²C compliant format. A subaddress is also sent after the second byte of the address (not
shown in diagram below).

02/12/11 15

The maximum number of data bytes to be read during the I2C10ReadArray function is currently set
to a maximum of 256 bytes.

Win-I2CUSBDLL Professional

C/C++: uchar I2C10ReadArray(short int address, uchar subaddress, short int

nBytes, uchar *ReadData);
Delphi: I2C10ReadArray(address: word, subaddress: byte; nBytes: word;
):
VB: I2C10ReadArray(ByVal address As Integer, ByVal subaddress As Byte,

ByVal nBytes As Integer, ByRef ReadData As Byte) As Byte

var ReadData: byte byte;

I2CRead
The I2CRead function (read an array with no subaddress) is similar to the I2CReadArray function;
however, it does not perform the write to a subaddress before the read is transmitted.
This function takes four arguments: the device address, the number of bytes to read, a pointer to an
element within an array of bytes where the bytes will be stored, and finally, a variable indicating
whether a Stop condition will be sent at the end of the transmission. It is the calling program’s
responsibility to allocate the correct memory space for the array. The function ensures that the lsb of
the address is set to a ‘1’ before it is sent to the target device.
The maximum number of data bytes that can be read during the I2CRead function is currently set to
a maximum of 500 bytes.

C/C++: uchar I2CRead(uchar address, short int nBytes, uchar *ReadData,
 short int SendStop);
Delphi: I2CRead(address: byte; nBytes: word; var ReadData: byte; SendStop:

LongBool): byte;
VB: I2CRead(ByVal address As Byte, ByVal nBytes As Integer, ByRef ReadData As

Byte, ByVar SendStop As Boolean) As Byte

I2CReceiveByte
The I2CReceiveByte function reads one byte from an I²C Bus/SMBus device. The function takes
the device address and a pointer to a memory location used to store the data byte. I2CReceiveByte
returns any error condition it encounters. The function ensures that the lsb of the address is a ‘1’
before it is sent to the target device.

C/C++: uchar I2CReceiveByte (uchar address, uchar *ReadData);
Delphi: I2CReceiveByte (address: byte; var ReadData: byte): byte;

02/12/11 16

Win-I2CUSBDLL Professional

02/12/11 17

VB: I2CReceiveByte (ByVal address As Byte,ByRef ReadData As Byte) As Byte

I2CReadByte
The I2CReadByte function reads one byte from an I²C Bus/SMBus device. The function takes the
device address, the subaddress and a pointer to a memory location to store the data byte.
I2CReadByte returns any error condition it encounters. The function ensures that the lsb of the
address is a ‘1’ before it is sent to the target device.

C/C++: uchar I2CReadByte (uchar address, uchar subaddress, uchar *ReadData);
Delphi: I2CReadByte (address, subaddress: byte; var ReadData: byte): byte;
VB: I2CReadByte (ByVal address As Byte, ByVal subaddress As Byte,
 ByRef ReadData As Byte) As Byte

I2CSendByte
The I2CSendByte function writes one byte to an I²C Bus/SMBus device. The function takes the
device address and one data byte. I2CSendByte returns any error condition it encounters. The
function ensures that the lsb of the address is a ‘0’ before it is sent to the target device.

C/C++: uchar I2CSendByte (uchar address, uchar DataByte);
; Delphi: I2CSendByte (address: byte; DataByte: byte): byte

VB: I2CSendByte (ByVal address As Byte, ByVal DataByte As Byte) As Byte

Win-I2CUSBDLL Professional

02/12/11 18

I2CWrite
The I2Cwrite function is a generic i2c write function. It takes four parameters: device address,
number of bytes to be sent, and a pointer to an element within an array of bytes, followed by a
Boolean value used to indicate if a Stop condition is required at the end of the transmission. The
function ensures that the lsb of the address is a ‘0’ before it is sent to the target device. The function
returns any error condition it encounters.
The DLL is currently set to write up to a maximum of 500 bytes in one I2CWrite transmission.

C/C++: uchar I2CWrite (uchar address, short int nBytes, uchar *WriteData,
 short int StopCondition);
Delphi: I2CWrite (address: byte; nBytes: word; var WriteData: byte; StopCondition:

LongBool): Byte;
VB: I2CWrite (ByVal address As Byte, ByVal nBytes As Integer, ByRef WriteData

As Byte, As Bool) As Byte StopCondition

I2CWriteArray
The I2CWriteArray takes four parameters: device address, device subaddress, number of bytes to be
sent, and a pointer to an element within an array of bytes. The function ensures that the lsb of the
address is a ‘0’ before it is sent to the target device. The function returns any error condition it
encounters.
The DLL is currently set to write up to a maximum of 500 data bytes in one I2CWriteArray
transmission.

C/C++: uchar I2CWriteArray (uchar address, uchar subaddress, short int nBytes,
uchar *WriteData);

Delphi: I2CWriteArray (address, subaddress: byte; nBytes: word; var WriteData:
byte): byte;

VB: I2CWriteArray (ByVal address As Byte, ByVal subaddress As Byte,
 nBytes , WriteData) ByVal As Integer ByRef As Byte As Byte

Win-I2CUSBDLL Professional

02/12/11 19

I2CWriteArrayDB
The I2CWriteArrayDB is generally used to write to eeproms larger than 32kbits that requ

ayDB take
ire two
s five

pointer to an element within an array of bytes. The function ensures that the lsb of the address is a
‘0’ before it is sent to the target device. The function returns any error condition it encounters.
The DLL is currently set to write up to a maximum of 500 data bytes in one I2CWriteArrayDB
transmission.
This function requires Win-I2CUSB firmware version 1.6 or later.

C/C++: uchar I2CWriteArrayDB (uchar address, uchar saHigh, uchar saLow, short int
nBytes, uchar *WriteData);

Delphi: I2CWriteArrayDB (address, saHigh, saLow: byte; nBytes: word; var
WriteData: byte): byte;

VB: I2CWriteArrayDB (ByVal address As Byte, ByVal saHigh As Byte, ByVal saHigh
As Byte, ByVal nBytes As Integer, ByRef WriteData As Byte) As Byte

subaddresses to define a memory location within the device. The I2CWriteArr
parameters: device address, device high and low subaddresses, number of bytes to be sent, and a

I2C10WriteArray
n (write an array with 10-bit device addressing) is similar to the

the

own in diagram below),

C/C++:

Delphi:
 e;
VB: I2C10WriteArray (ByVal address As Integer, ByVal subaddress As Byte,

ByVal nBytes As Integer, ByRef WriteData As Byte) As Byte

The I2C10WriteArray functio
I2CWriteArray function; however, it uses 10-bit I²C addressing. The I²C specification states that
10-bit address has the following format:
First byte: 1111 0xx + R/W bit
Second byte: xxxx xxxx; where x = the 10 bits of address
The function takes the received 16-bit address data and uses the lower 10 bits to generate the proper
10-bit I²C compliant format.
The DLL is currently set to write up to a maximum of 256 data bytes (nBytes) in one
I2C10WriteArray transmission.

te of the address (not shA subaddress is also sent after the second by
followed by the data.

uchar I2C10WriteArray (short int address, uchar subaddress,
short int nBytes, uchar *WriteData);
I2C10WriteArray (address, subaddress: byte; nBytes: word;
var WriteData: byte): byt

Win-I2CUSBDLL Professional

02/12/11 20

I2CWriteByte
The I2CWriteByte function writes one data byte to an I²C bus device. The function takes three
parameters: the device address, the subaddress, and a single data byte and returns any error condition
it encounters. The function ensures that the lsb of the address is a ‘0’ before it is sent to the target
device.

C/C++: uchar I2CWriteByte (uchar address, uchar subaddress, uchar Data);
Delphi: I2CWriteByte (address, subaddress, Data: byte): byte;
VB: I2CWriteByte (ByVal address As Byte, ByVal subaddress As Byte, ByVal Data As

Byte) As Byte

I2CWriteRepWrite
The I2CwriteRepWrite function writes two i2c messages separated by a Restart condition. Each i2
message

c
 is defined by three parameters: the address, the number of bytes in the message, and a

ore they

This function is useful for a device such as a large eeprom which requires an address and two
subaddresses to define where to write the data.

C/C++: uchar I2CWriteRepWrite (uchar address0, short int nBytes0, uchar *WriteData0,
uchar address1, short int nBytes1, uchar *WriteData1);

Delphi: I2CWriteRepWrite (address0: byte; nBytes0: short int; var WriteData0: byte;
address1: byte; nBytes1: short int; var WriteData1: byte): byte;

VB: I2CWriteRepWrite (ByVal address0 As Byte, ByVal nBytes0 As Integer, ByRef
WriteData0 As Byte, ByVal address1 As Byte, ByVal nBytes1 As Integer, ByRef
WriteData1 As Byte) As Byte

pointer to the data to be sent. The function ensures that the lsb of the addresses are ‘0’ bef
are sent to the target device.
The maximum number of data bytes (nBytes0 + nBytes1) that can be sent in the two messages is set
at 500 bytes.

Win-I2CUSBDLL Professional

02/12/11 21

I2CWriteRepRead
The I2CWriteRepRead function writes an I2C message followed by an I2C read message. The
messages are separated by a Restart condition.

message is defined by two parameters: the

 two

 number of bytes in the message, and a pointer to the

C/C++: short int nBytesWrite, uchar
*WriteData, short int nBytesRead, uchar *DataRead);

Delphi: I2CWriteRepRead (address: byte; nBytesWrite: word; var WriteData: byte;
nBytesRead: word; var DataRead: byte): byte;

VB: I2CWriteRepRead (ByVal address As Byte, ByVal nBytesWrite As Integer, ByRef
WriteData As Byte, ByVal nBytesRead As Integer, ByRef DataRead As Byte) As
Byte

Each
data to be sent/received. The address is the same for both the write and read. The lsb of the address
byte is not important since the software will set it high for a read and low fo write. r a
The maximum number of data bytes that can be written and read is 256 bytes each.
This function is useful fo memoryr a device such as a large eeprom or flash which require an address
and three subaddresses to define which memory address to read.

uchar I2CWriteRepRead (uchar address,

SetI2CFrequency
This function sets the I²C clock frequency to the value (in thousands of Hz) passed by the user’s
program. The frequency must be a positive integer. If a frequency is selected which is above the
maximum frequency, the dll will set the frequency to the maximum I²C frequency that the Win-
I2CUSB Hardware is capable of achieving, currently 1000 kHz. The Hardware is not capable of
achieving every discrete frequency so it will choose the closest available frequency. The actual

USB hardware will be returned by the function. The minimum

C/C++:
Delphi:
VB:

frequency used by the Win-I2C
frequency is 15.7 kHz so if a value is requested which is lower than this; the Win-I2CUSB adapter
will be set to the minimum value.

int SetI2CFrequency (int frequency);
SetI2CFrequency (frequency: integer): integer;
SetI2Cfrequency (ByVal frequency As Long) As Long

SetI2CFrequency_DC
y and the duty cyThis function allows the user to set the frequenc cle of I²C clock. While the

es when

high or SCLlow is 4.
high or SCLlow is 255.

C/C++:
Delphi:

SetI2CFrequency (see above) function attempts to get close to 50% duty cycle, there are tim
you may want to use different times for the clock high and low times.
The frequency is determined by the following equation:
f = 8x106 / (SCLhigh + SCLlow) SCL
Example:
fSCL = 8x106 / (25 + 15) = 200 kHz

The minimum value for SCL
The maximum value for SCL
The actual frequency used by the Win-I2CUSB hardware will be returned by the function.

int SetI2CFrequency_DC (int SCLhigh, int SCLlow);
SetI2CFrequency_DC (SCLhigh, SCLlow: integer): integer;
SetI2CFrequency_DC (ByVal SCLhigh As Long, ByVal SCLlow As Long) As LongVB:

Win-I2CUSBDLL Professional

02/12/11 22

SPI Specific Functions
SPI_Configure
The SPI_Configure function takes one byte that defines the configuration of the SPI master.

C/C++:
Delphi:
VB: Byte

 The two low order bits M1 and M0 define the SPI mode.

uchar SPI_Configure (uchar SPI_Mode);
SPI_Configure (SPI_Mode: byte): byte;
SPI_Configure (ByVal SPI_Mode As Byte) As

SPI_SetFrequency
The SPI_SetFrequency function takes a value that defines the frequency in kHz and configures the
Win-I2CUSB adapter to transmit at an appropriate frequency. The Win-I2CUSB adapter has the
ability to transmit at four specific frequencies. The hardware will be programmed to transmit at the
following frequencies:

C/C++: int SPI_SetFrequency (int frequency);
Delphi: SPI_SetFrequency (frequency: integer): integer;
VB: SPI_SetFrequency (ByVal frequency As Long) As Long

SPI_Generic
The SPI_Generic function writes the number of bytes defined by nBytes with values defined in an
array WriteData. As the data is written, the Win-I2CUSB adapter also reads the data into the array
defined by pointer ReadData. The number of bytes sent and received will equal nBytes.
The maximum value of nBytes is 500 bytes.

C/C++: uchar SPI_Generic (short int nBytes, uchar *WriteData, uchar *ReadData);
Delphi: SPI_Generic (nBytes: word; var WriteData: byte; var ReadData: byte): byte;

Win-I2CUSBDLL Professional

02/12/11 23

VB: SPI_Generic (ByVal nBytes As I
 ByRef ReadData As Byte) As Byt

nteger, ByRef WriteData As Byte,
e

SPI_Write
The SPI_Write function writes the number of bytes defined by nBytes with values defined by pointer
WriteData. The returned value will indicate if the transmission was successful. The maximum value
of nBytes is 500 bytes.

C/C++: uchar SPI_Write (short int nBytes, uchar * WriteData);
Delphi: SPI_Write (nBytes: word; var WriteData: byte): byte;
VB: SPI_Write (ByVal nBytes As Integer, ByRef WriteData As Byte) As Byte

SPI_WriteRead
The SPI_WriteRead function writes an array of data to an SPI slave device and reads an array from

ytes0 value defines the numit. The nB ber of bytes written while nBytes1 defines the number of
of data to be written while ReadData points to

ce.

C/C++: uchar SPI_WriteRead (short int nBytesWrite, short int nBytesRead,
 uchar * WriteData, uchar * ReadData);
Delphi: SPI_WriteRead (nBytesWrite, nBytesRead: word; var WriteData: byte;
 var ReadData: byte): byte;
VB: SPI_WriteRead (ByVal nBytesWrite As Integer, ByVal nBytesRead As Integer,

ByRef WriteData As Byte, ByRef ReadData As Byte) As Byte

bytes read. WriteData defines a pointer to the array
an array where the nBytes1 bytes of data will be returned by the devi
The maximum size of nBytes0 and nBytes1 is 500 bytes (each).

Win-I2CUSBDLL Professional

02/12/11 24

SPI_WriteWithOC
The SPI_WriteWithOC function allows you to send an OpCode during one CS cycle and then data in
another CS cycle. This can be useful for devices such as eeproms which require the user to enable a
write before the write cycle is initiated. The first byte in the WriteData array will be sent in the first
CS cycle while the remaining bytes will be sent in the second CS cycle. The maximum number of
bytes which can be sent in one packet is 500 bytes.

C/C++: uchar SPI_WriteWithOC (short int nBytes, uchar * WriteData);
Delphi: SPI_WriteWithOC (nBytes: word; var WriteData: byte): byte;
VB: SPI_WriteWithOC (ByVal nBytes As Integer, ByRef WriteData As Byte) As Byte

Win-I2CUSBDLL Professional

02/12/11 25

APP

l

characterized by the clock
(SCLK) starting at a low
level. The data is
sampled on the leading
edge of the clock.

SPI MODE 1
Mode 1 operation is

(SCLK) starting at a low
level. The data is sampled
on the falling edge of the
clock.

ENDIX A
SPI Modes of Operation
SPI is defined by both a clock polarity and phase. Here are the four possible modes of operation, al
are support by the Win-I2CUSB DLL.

SPI MODE 0
Mode 0 operation is

characterized by the clock

Win-I2CUSBDLL Professional

02/12/11 26

SPI MODE 2
Mode 2 operation is
characterized by the clock

The data is sampled on the
falling edge of the clock.

SPI MODE 3
Mode 3 operation is
charact ized by the clock
(SCLK) starting at a high level.
The data is sampled on the rising
edge of the clock.

(SCLK) starting at a high level.

er

Win-I2CUSBDLL Professional

02/12/11 27

Error Codes

The following error codes are returned by the various functions in W

0x00: No error
0x01: Address not Acknowledged
0x02: Data not Acknowledged
0x07: Arbitration lost
0x08: I2C Time Out
0x0A: Transmission aborted
0x0B: Message sent but a Nack was encountered
0x80: Unsupported function (make sure you have the latest firmware)
0xFF: Hardware not detected or USB error

inI2CUSBpro.dll:

	I²C Protocol
	General Characteristics
	Bit Transfer
	Start and Stop Conditions
	I²C Address
	Subaddress
	Data Transfer
	Acknowledge
	I²C Bus Documentation

	Minimum System Configuration
	Win-I2CUSBDLL Professional Contents
	Files installed for Win-I2CUSBDLL Professional
	Location of DLL

	Testing the Installation
	Migrating to Win-I2CUSB V3 hardware
	Exported Functions using the stdcall convention
	General Control Functions
	Enable3VOutputPower
	Enable5VOutputPower
	GetFirmwareRevision
	GetHardwareInfo
	GetNumberOfDevices
	SelectBySerialNumber
	GetSerialNumbers
	Get_DLL_Version
	ShutdownProcedure

	IO Functions
	Read_IO
	Write_IO
	Disable_I2C
	Enable_I2C
	GPIO_I2C_Write
	GPIO_I2C_Read
	Disable_SPI
	Enable_SPI
	Configure_SPI_GPIO
	GPIO_SPI_Write
	GPIO_SPI_Read

	I2C Specific Functions
	GetI2CFrequency
	GetI2CIgnoreAck
	I2CIgnoreAck
	I2CReadArray
	I2CReadArrayDB
	I2C10ReadArray
	I2CRead
	I2CReceiveByte
	I2CReadByte
	I2CSendByte
	I2CWrite
	I2CWriteArray
	I2CWriteArrayDB
	I2C10WriteArray
	I2CWriteByte
	I2CWriteRepWrite
	I2CWriteRepRead
	SetI2CFrequency
	SetI2CFrequency_DC

	SPI Specific Functions
	SPI_Configure
	SPI_SetFrequency
	SPI_Generic
	SPI_Write
	SPI_WriteRead
	SPI_WriteWithOC

	APPENDIX A
	SPI Modes of Operation

	Error Codes

